Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 19(1): 72, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684928

RESUMO

BACKGROUND: In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS: In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION: A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.


Assuntos
Aspergillus/metabolismo , Ácido Cítrico/metabolismo , Engenharia Metabólica/métodos , Proteínas Mitocondriais/metabolismo , Oxaloacetatos/metabolismo , Malatos/metabolismo
2.
J Ind Microbiol Biotechnol ; 43(8): 1139-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169528

RESUMO

The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have investigated the regulatory effect of LaeA on production of citric acid and cellulolytic enzymes in A. carbonarius. Two types of A. carbonarius strains, having laeA knocked out or overexpressed, were constructed and tested in fermentation. The knockout of laeA significantly decreased the production of citric acid and endoglucanases, but did not reduce the production of beta-glucosidases or xylanases. The citric acid accumulation was reduced with 74-96 % compared to the wild type. The endoglucanase activity was reduced with 51-78 %. Overexpression of LaeA seemed not to have an effect on citric acid production or on cellulose or xylanase activity.


Assuntos
Aspergillus/metabolismo , Celulases/metabolismo , Ácido Cítrico/metabolismo , Metiltransferases/fisiologia , Aspergillus/enzimologia , Aspergillus/genética , Fermentação , Metiltransferases/genética
3.
BMC Genomics ; 14: 928, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24373541

RESUMO

BACKGROUND: The fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants. RESULTS: A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place. CONCLUSIONS: The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants discarding old fungal biomass from this part of the garden. The transcripts that we found suggest that actively growing mycelium in the bottom of gardens helps to maintain an optimal water balance to avoid hyphal disintegration, so the ants can ultimately discard healthy rather than decaying and diseased garden material, and to buffer negative effects of varying availability and quality of substrate across the seasons.


Assuntos
Agaricales/genética , Formigas/microbiologia , Parede Celular/química , Celulose/metabolismo , Agaricales/enzimologia , Animais , Biomassa , Celulases/metabolismo , Etiquetas de Sequências Expressas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Polissacarídeos/metabolismo , Simbiose
4.
IMA Fungus ; 3(1): 87-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23155503

RESUMO

The vision of the European common research programme for 2014-2020, called Horizon 2020, is to create a smarter, more sustainable and more inclusive society. However, this is a global endeavor, which is important for mycologists all over the world because it includes a special role for fungi and fungal products. After ten years of research on industrial scale conversion of biowaste, the conclusion is that the most efficient and gentle way of converting recalcitrant lignocellulosic materials into high value products for industrial purposes, is through the use of fungal enzymes. Moreover, fungi and fungal products are also instrumental in producing fermented foods, to give storage stability and improved health. Climate change will lead to increasingly severe stress on agricultural production and productivity, and here the solution may very well be that fungi will be brought into use as a new generation of agricultural inoculants to provide more robust, more nutrient efficient, and more drought tolerant crop plants. However, much more knowledge is required in order to be able to fully exploit the potentials of fungi, to deliver what is needed and to address the major global challenges through new biological processes, products, and solutions. This knowledge can be obtained by studying the fungal proteome and metabolome; the biology of fungal RNA and epigenetics; protein expression, homologous as well as heterologous; fungal host/substrate relations; physiology, especially of extremophiles; and, not the least, the extent of global fungal biodiversity. We also need much more knowledge and understanding of how fungi degrade biomass in nature.The projects in our group in Aalborg University are examples of the basic and applied research going on to increase the understanding of the biology of the fungal secretome and to discover new enzymes and new molecular/bioinformatics tools.However, we need to put Mycology higher up on global agendas, e.g. by positioning Mycology as a candidate for an OECD Excellency Program. This could pave the way for increased funding of international collaboration, increased global visibility, and higher priority among decision makers all over the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...